From post

Virtual Cardiac Surgical Planning Through Hemodynamics Simulation and Design Optimization of Fontan Grafts.

, , , , , , , , и . MICCAI (5), том 11768 из Lecture Notes in Computer Science, стр. 200-208. Springer, (2019)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

CorFix: Virtual Reality Cardiac Surgical Planning System for Designing Patient Specific Vascular Grafts., , , , , , , , и . VRST, стр. 15:1-15:5. ACM, (2020)Virtual Planning and Simulation of Coarctation Repair in Hypoplastic Aortic Arches: Is Fixing the Coarctation Alone Enough?, , , , , , , и . BIOINFORMATICS, стр. 138-143. SCITEPRESS, (2022)Design and Simulation of Patient-Specific Tissue-Engineered Bifurcated Right Ventricle-Pulmonary Artery Grafts using Computational Fluid Dynamics., , , , , , , , , и 3 other автор(ы). BIBE, стр. 1012-1018. IEEE, (2019)Hemodynamics of Convergent Cavopulmonary Connection with Ventricular Assist Device for Fontan Surgery: A Computational and Experimental Study., , , , , , , , , и 2 other автор(ы). BIOINFORMATICS, стр. 51-58. SCITEPRESS, (2023)Virtual Cardiac Surgical Planning Through Hemodynamics Simulation and Design Optimization of Fontan Grafts., , , , , , , , и . MICCAI (5), том 11768 из Lecture Notes in Computer Science, стр. 200-208. Springer, (2019)Non-invasive Prediction of Peak Systolic Pressure Drop across Coarctation of Aorta using Computational Fluid Dynamics., , , , , , , и . EMBC, стр. 2295-2298. IEEE, (2020)Automatic Shape Optimization of Patient-Specific Tissue Engineered Vascular Grafts for Aortic Coarctation., , , , , , , , и . EMBC, стр. 2319-2323. IEEE, (2020)