From post

Agreement between the white matter connectivity based on the tensor-based morphometry and the volumetric white matter parcellations based on diffusion tensor imaging.

, , , , , , , и . ISBI, стр. 42-45. IEEE, (2012)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Agreement between the white matter connectivity based on the tensor-based morphometry and the volumetric white matter parcellations based on diffusion tensor imaging., , , , , , , и . ISBI, стр. 42-45. IEEE, (2012)Sparse shape representation using the Laplace-Beltrami eigenfunctions and its application to modeling subcortical structures., , , , и . MMBIA, стр. 25-32. IEEE, (2012)2.4 ATOMUS: A 5nm 32TFLOPS/128TOPS ML System-on-Chip for Latency Critical Applications., , , , , , , , , и 56 other автор(ы). ISSCC, стр. 42-44. IEEE, (2024)Heat Kernel Smoothing via Laplace-Beltrami Eigenfunctions and Its Application to Subcortical Structure Modeling., , , , , и . PSIVT (1), том 7087 из Lecture Notes in Computer Science, стр. 36-47. Springer, (2011)Improved statistical power with a sparse shape model in detecting an aging effect in the hippocampus and amygdala., , , , , , и . Image Processing, том 9034 из SPIE Proceedings, стр. 90340Y. SPIE, (2014)Structural connectivity via the tensor-based morphometry., , , , , , и . ISBI, стр. 808-811. IEEE, (2011)Group-wise analysis on myelination profiles of cerebral cortex using the second eigenvector of Laplace-Beltrami operator., , , , и . ISBI, стр. 1007-1010. IEEE, (2014)