Engineer friends often ask me: Graph Deep Learning sounds great, but are there any big commercial success stories? Is it being deployed in practical applications? Besides the obvious ones–recommendation systems at Pinterest, Alibaba and Twitter–a slightly nuanced success story is the Transformer architecture, which has taken the NLP industry by storm. Through this post, I want to establish links between Graph Neural Networks (GNNs) and Transformers. I’ll talk about the intuitions behind model architectures in the NLP and GNN communities, make connections using equations and figures, and discuss how we could work together to drive progress.
We introduce the Generative Query Network (GQN), a framework within which machines learn to perceive their surroundings by training only on data obtained by themselves as they move around scenes. Much like infants and animals, the GQN learns by trying to make sense of its observations of the world around it. In doing so, the GQN learns about plausible scenes and their geometrical properties, without any human labelling of the contents of scenes.
*NOTE: These videos were recorded in Fall 2015 to update the Neural Nets portion of the class. MIT 6.034 Artificial Intelligence, Fall 2010 View the complete...
Subscribe to stay notified about new videos: http://3b1b.co/subscribe Support more videos like this on Patreon: https://www.patreon.com/3blue1brown Special t...
In this project, we provide our implementations of CNN [Zeng et al., 2014] and PCNN [Zeng et al.,2015] and their extended version with sentence-level attention scheme [Lin et al., 2016] .
What are Convolutional Neural Networks and why are they important? Convolutional Neural Networks (ConvNets or CNNs) are a category of Neural Networks that have proven very effective in areas such as image recognition and classification. ConvNets have been successful in identifying faces, objects and traffic signs apart from powering vision in robots and self driving cars. Figure 1:…
TensorFlow™ is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.
J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding. Proceedings of the 28th International Joint Conference on Artificial Intelligence, page 4278–4284. AAAI Press, (Aug 10, 2019)