SUBDUE is a graph-based knowledge discovery system that finds structural, relational patterns in data representing entities and relationships. SUBDUE represents data using a labeled, directed graph in which entities are represented by labeled vertices or subgraphs, and relationships are represented by labeled edges between the entities. SUBDUE uses the minimum description length (MDL) principle to identify patterns that minimize the number of bits needed to describe the input graph after being compressed by the pattern. SUBDUE can perform several learning tasks, including unsupervised learning, supervised learning, clustering and graph grammar learning.
Ninth Workshop on Mining and Learning with Graphs will be held in conjunction with the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining that will take place August 21-24, 2011 in San Diego, CA.