bookmarks  

    No matching posts.
  • ⟨⟨
  • ⟩⟩

publications  1  

  •  

    , and . IJIRIS:: International Journal of Innovative Research in Information Security, Volume VI (Issue II): 29-39 (February 2019)1. Katiyar, A., Singh, S. K. & Haritash, A. K. Effect of Odd Even Scheme To Combat Air Pollution in Nct of Delhi. Int. J. Adv. Res 5, 2320–5407 (2017). 2. Shekhar Singh, S. & SK, S. Environmental Concerns in National Capital Territory of Delhi, India. J. Climatol. Weather Forecast. 03, 3–7 (2015). 3. Tiwary, A. & Colls, J. Air Pollution: Measurement, modelling and mitigation. Atmospheric Environment (2010). doi:doi:10.4324/9780203476024.fmatt 4. Paliatsos, A. G., Kaldellis, J. K., Koronakis, P. S. & Garofalakis, J. E. Fifteen year air quality trends associated with the vehicle traffic in Athens, Greece. Fresenius Environ. Bull. 11, 1119–1126 (2002). 5. LI, X., LIU, C., LEUNG, D. & LAM, K. Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ. 40, 5640–5658 (2006). 6. Assael, M. J., Delaki, M. & Kakosimos, K. E. Applying the OSPM model to the calculation of PM10concentration levels in the historical centre of the city of Thessaloniki. Atmos. Environ. 42, 65–77 (2008). 7. Taseiko, O. V., Mikhailuta, S. V., Pitt, A., Lezhenin, A. A. & Zakharov, Y. V. Air pollution dispersion within urban street canyons. Atmos. Environ. 43, 245–252 (2009). 8. Aenab, A. M., Needs, C., Foundation, S. & Singh, S. K. Air Quality Assessment : A Statistical Approach to Stationary Air Monitoring Stations Air Quality Assessment : A Statistical Approach to Stationary Air Monitoring Stations. (2015). 9. Mapoma, H. W. T., Tenthani, C., Tsakama, M. & Kosamu, I. B. M. Air quality assessment of carbon monoxide, nitrogen dioxide and sulfur dioxide levels in Blantyre, Malawi: A statistical approach to a stationary environmental monitoring station. African J. Environ. Sci. Technol. 8, 330–343 (2014). 10. Meroney, R. N., Pavageau, M., Rafailidis, S. & Schatzmann, M. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons. J. Wind Eng. Ind. Aerodyn. 62, 37–56 (1996). 11. Rafailidis, S. Influence of Building Areal Density and Roof Shape on the Wind Characteristics Above a Town. Boundary-Layer Meteorol. 85, 255–271 (1997). 12. Uehara, K., Murakami, S., Oikawa, S. & Wakamatsu, S. Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos. Environ. (2000). doi:10.1016/S1352-2310(99)00410-0 13. Yassin, M. F., Kellnerová, R. & Jaňour, Z. Impact of street intersections on air quality in an urban environment. Atmos. Environ. 42, 4948–4963 (2008). 14. Chan, T. L., Dong, G., Leung, C. W., Cheung, C. S. & Hung, W. T. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon. Atmos. Environ. 36, 861–872 (2002). 15. Kanakiya, R. S., Singh, S. K. & Mehta, P. M. Urban Canyon Modelling : A Need for the Design of Future Indian Cities. 4, 86–95 (2015). 16. Assimakopoulos, V. D., ApSimon, H. M. & Moussiopoulos, N. A numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations. Atmos. Environ. 37, 4037–4049 (2003). 17. Hassan, A. A. & Crowther, J. M. Modelling of fluid flow and pollutant dispersion in a street canyon. in Environmental Monitoring and Assessment (1998). doi:10.1023/A:1005928630000 18. Huang, H., Akutsu, Y., Arai, M. & Tamura, M. A two-dimensional air quality model in an urban street canyon: Evaluation and sensitivity analysis. Atmos. Environ. 34, 689–698 (2000). 19. Di Sabatino, S., Buccolieri, R., Pulvirenti, B. & Britter, R. Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models. Atmos. Environ. 41, 8316–8329 (2007). 20. Sini, J. F., Anquetin, S. & Mestayer, P. G. Pollutant dispersion and thermal effects in urban street canyons. Atmos. Environ. 30, 2659–2677 (1996). 21. Ahmadi, G. & Li, A. Computer simulation of particle transport and deposition near a small isolated building. J. Wind Eng. Ind. Aerodyn. 84, 23–46 (2000). 22. Janour, Z., Jurcakova, K., Brych, K., Dittrt, F. & Dittrich, F. Potential risks at an industrial site: A wind tunnel study. Process Saf. Environ. Prot. 88, 185–190 (2010). 23. Kim, J. J. & Baik, J. J. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-ε turbulence model. Atmos. Environ. 38, 3039–3048 (2004). 24. Gousseau, P., Blocken, B., Stathopoulos, T. & van Heijst, G. J. F. CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal. Atmos. Environ. (2011). doi:10.1016/j.atmosenv.2010.09.065 25. Li, X. X., Liu, C. H. & Leung, D. Y. C. Large-eddy simulation of flow and pollutant dispersion in high-aspect-ratio urban street canyons with wall model. Boundary-Layer Meteorol. (2008). doi:10.1007/s10546-008-9313-y 26. Xie, Z. T. & Castro, I. P. Large-eddy simulation for flow and dispersion in urban streets. Atmos. Environ. (2009). doi:10.1016/j.atmosenv.2009.01.016 27. Barmpas, F., Bouris, D. & Moussiopoulos, N. 3D Numerical Simulation of the Transient Thermal Behavior of a Simplified Building Envelope Under External Flow. J. Sol. Energy Eng. (2009). doi:10.1115/1.3139137 28. Jiang, Y. & Chen, Q. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation. Build. Environ. (2002). doi:10.1016/S0360-1323(01)00036-1 29. Tzempelikos, A., Athienitis, A. K. & Karava, P. Simulation of facade and envelope design options for a new institutional building. Sol. Energy (2007). doi:10.1016/j.solener.2007.02.006 30. Jiang, Y., Alexander, D., Jenkins, H., Arthur, R. & Chen, Q. Natural ventilation in buildings: Measurement in a wind tunnel and numerical simulation with large-eddy simulation. J. Wind Eng. Ind. Aerodyn. (2003). doi:10.1016/S0167-6105(02)00380-X.
    6 years ago by @ijiris
    (0)
     
     
  • ⟨⟨
  • 1
  • ⟩⟩