Diffusion Bee is the easiest way to run Stable Diffusion locally on your M1 Mac. Comes with a one-click installer. No dependencies or technical knowledge needed. - GitHub - divamgupta/diffusionbee-stable-diffusion-ui: Diffusion Bee is the easiest way to run Stable Diffusion locally on your M1 Mac. Comes with a one-click installer. No dependencies or technical knowledge needed.
I. Golan, and R. El-Yaniv. Proceedings of the 32nd International Conference on Neural Information Processing Systems, page 9781–9791. Red Hook, NY, USA, Curran Associates Inc., (2018)
M. Ferrari Dacrema, P. Cremonesi, and D. Jannach. Proceedings of the 13th ACM Conference on Recommender Systems, page 101–109. New York, NY, USA, Association for Computing Machinery, (2019)
J. Weyn, D. Durran, and R. Caruana. Journal of Advances in Modeling Earth Systems, 11 (8):
2680--2693(2019)\_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001705.
N. Kimura, M. Kono, and J. Rekimoto. Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, Paper 146, page 1--11. New York, NY, USA, Association for Computing Machinery, (May 2019)
Q. Le, and T. Mikolov. Proceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, page 1188--1196. Bejing, China, PMLR, (June 2014)
Y. Liu, A. Ganguly, and J. Dy. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, page 3145–3153. New York, NY, USA, ACM, (2020)
M. Ribeiro, S. Singh, and C. Guestrin. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, (August 2016)Available at https://arxiv.org/pdf/1602.04938.pdf.