This is the Graph Neural Networks: Hands-on Session from the Stanford 2019 Fall CS224W course.
In this tutorial, we will explore the implementation of graph neural networks and investigate what representations these networks learn. Along the way, we'll see how PyTorch Geometric and TensorBoardX can help us with constructing and training graph models.
Pytorch Geometric tutorial part starts at -- 0:33:30
Details on:
* Graph Convolutional Neural Networks (GCN)
* Custom Convolutional Model
* Message passing
* Aggregation functions
* Update
* Graph Pooling
This page contains list of mathematical Theorems which are at the same time (a) great, (b) easy to understand, and (c) published in the 21st century. See here for more details about these criteria. Click on any theorem to see the exact formulation, or click here for the formulations of all theorems. You can also…
While implementing a quick toy example of Crane and Sawhney's really great Monte Carlo Geometry Processing paper, the question arose about whether a quick function I grabbed from The Internet to equally distribute points on a sphere was correct or not. Since it's absolutely the crux of the method, this is an important question! This notebook performs a rather unscientific check for equal distribution of points on the surface of a sphere. It uses the first algorithm from MathWorld: Sphere Point Picking. Foll
GPUs are designed to do many things well, but drawing transparent 3D objects is not one of them. Opacity doesn't commute so that the order in which you draw surfaces makes a big difference. Of course simple additive blending does commute, but it's not really what we think of as "transparent objects". The simplest way to draw transparent objects is from back to front via the painter's algorithm. In this approach we sort geometry and draw only from back to front. This requires sorting triangles, which, in add
H. Chawla, M. Jukola, T. Brouns, E. Arani, und B. Zonooz. (2020)cite arxiv:2007.12918Comment: Accepted at 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
M. Cook, A. Zare, und P. Gader. (2020)cite arxiv:2007.01263Comment: 6 pages, 4 figures, Presented at the ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning.
R. Hanocka, G. Metzer, R. Giryes, und D. Cohen-Or. (2020)cite arxiv:2005.11084Comment: SIGGRAPH 2020; Project page: https://ranahanocka.github.io/point2mesh/.
M. Lindvall, und J. Molin. (2020)cite arxiv:2001.07455Comment: Accepted for presentation in poster format for the ACM CHI'19 Workshop <Emerging Perspectives in Human-Centered Machine Learning>.
Q. Qu, Z. Zhu, X. Li, M. Tsakiris, J. Wright, und R. Vidal. (2020)cite arxiv:2001.06970Comment: QQ and ZZ contributed equally to the work. Invited review paper for IEEE Signal Processing Magazine Special Issue on non-convex optimization for signal processing and machine learning. This article contains 26 pages with 11 figures.
H. Tajima, und F. Fujisawa. (2020)cite arxiv:2007.00926Comment: 6 pages, 5 figures, accepted by Scientific and Educational Reports of the Faculty of Science and Technology, Kochi University.