Author of the publication

A 12nm 121-TOPS/W 41.6-TOPS/mm2 All Digital Full Precision SRAM-based Compute-in-Memory with Configurable Bit-width For AI Edge Applications.

, , , , , , , , and . VLSI Technology and Circuits, page 24-25. IEEE, (2022)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed. You can also use the button next to the name to display some publications already assigned to the person.

 

Other publications of authors with the same name

28-nm FD-SOI Dual-Port SRAM with MSB-Based Inversion Logic for Low-Power Deep Learning., , , and . ICECS, page 161-164. IEEE, (2018)A low power 6T-4C non-volatile memory using charge sharing and non-precharge techniques., , , , , , , , , and 4 other author(s). ISCAS, page 2904-2907. IEEE, (2015)20.1 NVE: A 3nm 23.2TOPS/W 12b-Digital-CIM-Based Neural Engine for High-Resolution Visual-Quality Enhancement on Smart Devices., , , , , , , , , and 14 other author(s). ISSCC, page 360-362. IEEE, (2024)A 5-nm 254-TOPS/W 221-TOPS/mm2 Fully-Digital Computing-in-Memory Macro Supporting Wide-Range Dynamic-Voltage-Frequency Scaling and Simultaneous MAC and Write Operations., , , , , , , , , and 8 other author(s). ISSCC, page 1-3. IEEE, (2022)Efficient Processing of MLPerf Mobile Workloads Using Digital Compute-In-Memory Macros., , , , , , , , , and 1 other author(s). IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 43 (4): 1191-1205 (April 2024)An 89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications., , , , , , , , , and 10 other author(s). ISSCC, page 252-254. IEEE, (2021)A 298-fJ/writecycle 650-fJ/readcycle 8T three-port SRAM in 28-nm FD-SOI process technology for image processor., , , , , , , , , and . CICC, page 1-4. IEEE, (2015)A 4nm 6163-TOPS/W/b $4790-TOPS/mm^2/b$ SRAM Based Digital-Computing-in-Memory Macro Supporting Bit-Width Flexibility and Simultaneous MAC and Weight Update., , , , , , , , , and 8 other author(s). ISSCC, page 132-133. IEEE, (2023)Layer Skip Learning using LARS variables for 39% Faster Conversion Time and Lower Bandwidth., , , , , , , and . ICECS, page 673-676. IEEE, (2018)Delayed Weight Update for Faster Convergence in Data-Parallel Deep Learning., , , , , , and . GlobalSIP, page 663-667. IEEE, (2018)