Enhance student engagement, collaboration, and feedback in both asynchronous and synchronous learning with FeedbackFruits LMS-integrated teaching tools.
Seit dem 01. Dezember 2021 fördert das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Förderlinie „Digitale Hochschulbildung“ das Verbundprojekt IMPACT – Implementierung von KI-basiertem Feedback und Assessment mit Trusted Learning Analytics in Hochschulen.
Das HIKOF-DL Projekt legt seinen Fokus auf die Weiterentwicklung bestehender Interventionen zur Verbesserung der Online-Lehre und deren Transfer in die Lehr- und Lernpraxis. Perspektivisch wird eine langfristige Etablierung von KI in der Aus- und Weiterbildung angestrebt. Das neu entstehende Feedback-System wird an der Goethe-Universität durch die Partner GU-SD und DIPF implementiert und mit dem Partner GU-PSY in einer der größten und hinsichtlich der Teilnehmenden heterogensten Vorlesungen der Universität mit rund 1000 Studierenden evaluiert. Die Ergebnisse werden zweimal jährlich dem Beirat aus verschieden Unternehmen vorgestellt und auf dessen Anwendbarkeit im wirtschaftlichen Bereich bewertet.
Feedback is one of the most powerful influences on students’ learning. There is a strong evidence base on effective delivery of feedback: what it should contain and how it should be framed. However we know far less about students’ reception of feedback information. If we want students to engage with and utilise the feedback we provide then what skills do they need and how do we nurture these skills? In this resource we first outline some of the key contemporary issues facing Higher Education practitioners in the domains of assessment and feedback and we consider the role and responsibility of the student in the feedback process. We then present a case study which outlines the development and implementation of the Developing Engagement with Feedback Toolkit (DEFT). Finally we present each component of the toolkit in turn: a feedback guide a feedback portfolio and a feedback workshop.
H. Gabbay, and A. Cohen. Proceedings of the Eleventh ACM Conference on Learning @ Scale, page 177–187. New York, NY, USA, Association for Computing Machinery, (Jul 15, 2024)
H. Heickal, and A. Lan. Proceedings of the 17th International Conference on Educational Data Mining, page 947--951. Atlanta, Georgia, USA, International Educational Data Mining Society, (July 2024)
P. Denny, S. MacNeil, J. Savelka, L. Porter, and A. Luxton-Reilly. Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1, page 408–414. New York, NY, USA, Association for Computing Machinery, (Jul 3, 2024)
P. Bassner, E. Frankford, and S. Krusche. Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1, page 394–400. New York, NY, USA, Association for Computing Machinery, (Jul 3, 2024)
C. Koutcheme, N. Dainese, S. Sarsa, A. Hellas, J. Leinonen, and P. Denny. Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1, page 52–58. New York, NY, USA, Association for Computing Machinery, (Jul 3, 2024)
M. Pankiewicz, and R. Baker. Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1, page 94–100. New York, NY, USA, Association for Computing Machinery, (Jul 3, 2024)
P. Cantillon, and J. Sargeant. BMJ (Clinical research ed.), (January 2008)4957<m:linebreak></m:linebreak>JID: 8900488; epublish;<m:linebreak></m:linebreak>Formació.
W. Chang, and I. McLean. BMC medical research methodology, (January 2006)4243<m:linebreak></m:linebreak>PUBM: Electronic; DEP: 20060302; JID: 100968545; 2005/09/07 received; 2006/03/02 accepted; 2006/03/02 aheadofprint; epublish;<m:linebreak></m:linebreak>Mesures de contrast.